We targeted two sites for intensive surveys: San Sebastián and Pingo de Oro, both on upland terraces several kilometers inland from the nearest river (Río Tahuamanu and Río M uyuyanu, respectively), and drained by several streams or small rivers (Figures 1, 2). We also inventoried three other sites along the Ríos Tahuamanu and M uyuyanu: Rutina, the Rutina-Palmera logging road, and Palmera.

San Sebastián (11° 24' S, 69° 01' W; ca. 280 m elevation; surveyed 16-18 October 1999) has an extensive trail system that extends in virtually all directions from camp and that includes Brazil-nut-gatherer trails and a grid cut at 100 m intervals over a 150-ha study area established by primatologists. Areas to the north, west, and south of camp are on well-drained terrace and ridge; areas to the southeast are lower and wetter. Bamboo occurs in small patches to the northwest and in more extensive areas just to the south of camp. We surveyed all habitats and made supplemental observations (1) at the edges of the two clearings in San Sebastián and (2) at the larger clearing of Casa Callimico about 1 km to the south (at the end of the road from Cebija). During the last decade, the area was logged for cedro (*Cedrela odorata*), mahogany (*Swietenia macrophylla*), and assai (*Euterpe precatoria*).

Pingo de Oro (11° 31' S, 69° 06' W, ca. 280 m elevation; surveyed 20-23 October 1999) also has an extensive trail system, developed and maintained by local rubber tappers. Pingo de Oro is a rubber-tapper camp in old-growth forest, with scattered, regenerating clearings of various sizes and ages. Rubber tappers and Brazil-nut gatherers have used the forest for centuries (see Inferred History of Human Impact, above), and the area has not been logged. Until late 1999, with the construction of a major logging road, Pingo de Oro had been accessible only by river. A recent (September 1999) network of forestry-survey trails was cut in a grid of 100 m east-to-west and 500 m north-to-south; we rarely used those trails. We made supplemental observations at the edge of the clearing at the rubber-tappers’ camp. We found no patches of bamboo at the site.

Rutina (11° 25' S, 69° 00' W; 19, 24-25 October 1999) is the site of a sawmill of Empresa San M artín, currently inactive, on the north bank of the Río Tahuamanu. It consists of a large clearing with some second growth near the river. An oxbow lake (cocha), bordered by forest, lies just to the west of the compound. We spent a few hours walking a trail along this cocha on 19 October, and part of the team made additional observations late on 24 and early on 25 October.

Rutina-Palmera logging road was constructed between August and September 1999 by the Empresa San M artín. It connects the sawmill at Rutina with the forests at Palmera/Pingo de Oro. The road ends at the Río M uyuyanu, directly opposite Palmera. Several members of the team walked the road on the afternoon of 23 October and from midmorning to evening on 24 October 1999. The road crosses seasonally flooded floodplain forest, an old clearing, and extensive terra firme.

Palmera (11° 30' S, 69° 03' W; 19, 23-24 October 1999) is a clearing along the Río M uyuyanu. River-edge forest contains thickets of bamboo.

Incidental observations were made on the evening of 19 October. A few members of the rapid survey team also took a brief trip by small boat (peque peque) for about an hour up the Río M uyuyanu from Palmera on the afternoon of 23 October. We had a few hours there on the morning of 24 October.

FLORA AND VEGETATION

Participants/Authors: Robin Foster, Julio Rojas G., Narel Paniagua Z., William S. Alverson, Guadalupe Tovar P.

Conservation targets: (1) Old-growth forest on terra firme; (2) all successional stages and habitats of major and minor floodplains; (3) Brazil-nut and rubber trees, and other species with fruits edible to birds, humans, and other primates.

METHODS

Flora Sampling

Collections: We made ad hoc collections of flowering and fruiting plants along existing trail systems, using 12 m pruning poles and occasional tree climbers, with emphasis on plants not immediately known to species. We also took vouchers (mostly leaf collections of adults or juveniles) along transects. We collected 314 species on this trip; among these were: from earlier collections by Leila Porter. Duplicate specimens are deposited in the Herbario Nacional de Bolivia (LPB, La Paz), the Field Museum (F, Chicago), and the Universidad Amazonica de Pando (UAP, Cebija) under the collection numbers of Narel Paniagua Z.

Photographs: We photographed species likely to be identified by the picture alone, as well as those that could be used for creating color guides to the species of the area. We took approximately 400 photos of 300 species.

Species notes: In the field and during over-flights, we noted easily recognizable species or species not accessible for collection or photograph.

Vegetation Sampling

Transsects: We used variable transects (Foster et al. ms.) to sample composition and relative abundance of different classes of plants. Variable transects provide a quick, quantitative description that supplements anecdotal description of the vegetation. These transects are not standardized to a specific area or width; rather, they are suited ideally for very rapid inventories (such as our seven days of fieldwork in five different sites during this trip) or for inventories of very large areas. For emergent trees (>60 cm DBH/DAP) and canopy trees (>30 cm DBH) we checked all the individuals encountered along 20 m-wide strips. For medium-sized, subcanopy trees (10-30 cm DBH), we used 5 m-wide strips; for shrubs (<10 cm DBH), we used 1 m-wide strips; and for herbs, we used 1 x 5 m segments, with each species represented only once per segment (in recognition of cloning by most herbaceous forest plants).
Data from these transects are summarized here. At San Sebastián, we sampled 248 individual plants in two transects. One transect had 20 canopy trees (>30 cm DBH), 20 medium trees (10-30 cm DBH), 20 shrubs (1-10 cm DBH, including juvenile trees), and 43 herbs in 20 5 m segments. The second transect included 25 emergent trees (>60 cm DBH) and 120 shrubs in 6 segments over the same distance. Because of our limited time, we sampled only emergent trees and shrubs in the other sites, given the importance of the former and the time, we sampled only emergent trees (>60 cm DBH) and 120 shrubs in 6 segments over the same distance. Likewise, at Palmera we sampled 385 individuals in two transects, totaling 207 emergent trees and 178 shrubs in 7 segments over approximately the same distance. Likewise, at Palma we sampled 140 individuals in a single transect of 40 emergent trees, and 100 shrubs in 5 segments over the same distance.

Vegetation Notes: We took anecdotal observations during overflights and in the field, focusing on (1) differences in species composition between hills and ravines, canopy and understory, and young and old-growth forests; (2) frequency of open versus closed canopy; (3) patchiness of target species; and (4) forest dynamics, including regeneration from windthrow, landslides, fire, and clearings for small-scale agricultural plots.

FLORISTIC RICHNESS, COMPOSITION, AND DOMINANCE

General

We provide descriptions of the upland (terra firme) and floodplain (llanura del rio) habitats above, in the Overview of Results section.

Our sample of the flora of the proposed Tahuamanu Ecological Reserve is biased in favor of freestanding woody plants. We recorded 615 different plant species in 97 families in the area during the seven days of this rapid survey (Appendix 1). An estimated 50 of these species never before have been registered in Bolivia. We estimate that the vascular plant flora of the proposed Tahuamanu Ecological Reserve is probably in the vicinity of 2,000 species. In sum, 296 species are in botanical collections (46 from San Sebastián, 188 from Pingo de Oro, and 62 from the floodplains in Rutina and Palmera); 249 species were represented by the 774 individuals sampled in transects; 150 species were sampled only by photograph; and 134 species were registered only from notes.

In the 615 species we recorded for the area, 5 of the families stand out: Fabaceae (with 71 species), Moraceae (47), Rubiaceae (27), Araceae (26), and Euphorbiaceae (24). The genera with most species represented are Ficus (24), Inga (17), Piper (13), and Pouteria (11). The species with the greatest number of individuals are almost inevitably those of small stature and occurring at high densities, such as Rinorea, Siparuna, and Geonoma, but by far the most abundant plant is the common Adiantum fern, which occurs on almost every square meter of mature forest in the terra firme. This Adiantum might be a candidate for the species with the largest, essentially contiguous populations in tropical forests of the world.

The diversity of plant species in the area is high, particularly for emergent trees (>60 cm DBH) in the terra firme. The diversity is probably typical of most of the Amazon Basin, and, as expected, is not as high as in the moister areas closer to the Andes.

In small samples of the same size on the upper slopes at San Sebastián, the emergent trees (18 species in a sample of 20 individuals) and shrubs (16 species per 20 individuals) appear to be more diverse than the canopy-level trees (14 species per 20) and medium understory trees (15 species per 20). The lowest diversity appears to be in the herbaceous plants. However, herbaceous plants were, from observation, much more diverse and abundant in the moist areas near stream bottoms, which were not sampled.

In the terra firme of Pingo de Oro, the sample of emergent trees (76 species per 207 individuals) are less diverse than the shrubs (77 species per 178), probably because sampling in all habitats - valley bottoms as well as hilltops - increases the number of small species that are more concentrated in the moister areas. In the high, older floodplain of Palma, both the sample of emergent trees (23 species per 40 individuals) and the sample of shrubs (30 species per 100) appear to be lower in diversity than in the terra firme.

Upland and Forests (Terra Firme)

The differences between terra firme forest at San Sebastián and at Pingo de Oro seem so slight that we have combined the data of the two in our results and discussion. The flora of these unflooded areas is, in general, typical of rich soil. The presence of large numbers of Moraceae, especially Ficus, and the high density of lianas are characteristic, as are the conspicuously low densities of Crysobalanaceae and Protium trees, M elastomataceae shrubs, Monotoma herbs, etc. The floristic composition is somewhat different between the high ridges and slopes but not dramatically so. The most conspicuous difference of the vegetation covering the ridges and hilltops is the greater abundance of Tetrastigma altissima and Cetis schippii in the canopy, and greater density of Geonoma palms and Piper spp. in the shrub layer. Species diversity is greater in the valley bottoms, especially those surrounded by steep ridges. The ravines and lower slopes are much richer in epiphytes, ferns, and other monocotyledonous herbs such as M arantaceae, Heliconia, Costus, and R. renelima. This floristic composition is typical of all but the wettest areas of Amazonia because the juveniles of many species cannot survive the periodic severe droughts on the ridge-topps. Epiphytes are relatively scarce, both in the canopy (bromeliads and orchids) and on tree trunks (aroids and ferns), though they are somewhat more common in the ravines. This scarcity indicates that sparse condensation overnight and long periods of low humidity exacerbate the effects of soil desiccation during dry spells.

The composition of the flora and the high productivity in the vegetation are unusual for terra firme. Productivity is surely not as high as on well-drained floodplain soils but is probably orders of magnitude higher than on the widespread acidic, sandy soils on the north side of the Amazon. The clay here is relatively rich in nutrients and the sandiness of the soil provides a much better structure (for root aeration and penetrability) than the deep, pure clays of terra firme. We sampled 232 emergent trees in the terra firme transects, representing 86 species. Of these, rubber (Hevea brasilensis, with 24 individuals) was by far the most abundant, but only because of sampling bias: several of the trails we used as transects were trails used by the rubber tappers collecting the latex. Hevea is nevertheless very abundant, especially on the lower hills; it certainly ranks in the top 10 most abundant trees in the area. Excluding this species, the most abundant emergents are Brosimum alicastrum, arbol de vaca (14 individuals); Cebia [Chorisia] insularis, toboroco (14); Pterygota amazonica (13); Tachigali vasquezii, palo santo (11); Bertholletia excelsa, castana (10); D. pteropy micrantha, almendillo (7); Clarisia racemosa, murure (7); Tetragastris altissima, isigo colorado (6); Apuleia leocarpa, almendro amarillo (5); and A. leucocarpa, almendro amarillo (5); and A. leucocarpa, almendro amarillo (5).
along the trails that we walked.

We sampled 318 shrubs, representing 122 species, in all terra firme transects combined. Of these, Rinorea "lf" (with 38 individuals) and Genomea decea (29) were by far the most abundant, followed by Sparrania cervicornis (13), Sparrania decipiens (12), and "rutac longif" (12). Almost all of the shrubs and juvenile trees sampled were species characteristic of terra firme, not floodplain. Approximately 44% of the individuals in these samples were juveniles of medium and large trees, not shrubs per se. This result is not unusual. The true shrubs accounted for more than 168 individuals, representing more than 45 species.

The frequency of patches of explosively dispersed species in the shrub layer is typical of almost all terra firme in the Amazon Basin. These are mainly species in the following groups: Violaceae, e.g., Rinorea; all lowland genera of Rutaceae, Except Zanthoxylum; Euphorbiaceae, e.g., Acalypha, Pararipistoma, Croton, M. abea, and Pausandara; and Annonaceae, e.g., Anzagorina. In particular, patches of Rutaceae and Violaceae can be extremely dense and crowd out other species in the following groups: Violaceae, e.g., Rinorea lindeniana (48 individuals); Rinorea "lf" (9) and Bactris concinna (5) were occasional. Rinorea lindeniana showed the strongest dominance by a single species in the region, other than the Adiantum in the terra firme herb layer and the several dominant species of young successional stages of the Tahuamanu floodplain.

WILD FRUIT RESOURCES

Many of the forest animals depend on fruit directly, or indirectly, by feeding on frugivores. We found dramatic differences in the kinds of fruit and seeds produced at different heights in the forest. Most of the emergent trees (84%) produce seeds that are dispersed by wind or by mammals. Among the shrubs, most disperse seeds explosively or via birds. Among the subcanopy and midstory trees, the large majority (more than 90%) disperse seeds through mammals or birds. This pattern, which seems common in the Amazon Basin, is much less pronounced in the wetter, less seasonal areas.

A few conspicuous exceptions we observed include, among the emergents, the giant Hura crepitans, which disperses explosively, and, among the shrubs, the Piper species, which are bat-dispersed, and the trefferns, the spores of which are wind-dispersed.

Successional forests on members of the Rio Tahuamanu have species similar to those along river meanders in adjacent southeastern Peru. Canopy trees in these forests in Peru are wind- or bat-dispersed, with increasing amounts of bird fruits and mammal fruits in the understory as the forest ages (Foster et al. 1986).

Food is available for animals at all levels in the forest, at least some of the year. But nearly 40% of the emergents are wind-dispersed, as are nearly all the canopy lilies. These species provide food only for animals that destroy the seeds and that can tolerate the toxins associated with them. Seeds of 30% of the shrubs disperse explosively and rarely are consumed by birds or mammals. Although the midstory has the highest concentration of species with animal-dispersed seeds, the higher production of fruit from the larger crowns of the emergents and canopy trees probably make that the primary layer for fruit consumption in large quantities. The tremendously abundant figs (at least 24 species, of Ficus recorded) and other large Moraceae (at least 10 species) are a primary source of food for animals in the terra firme forests. The abundant palms (Areaceae, 26 species recorded) also are a major source of food in these forests. The importance of the stratification to various animals depends to a large extent on the seasonal availability of the fruit.

HISTORY OF HUMAN USE

The most conspicuous feature of the vegetation is the predominance of the giant floodplain trees all over the terra firme. Second is the frequency of species of high potential value to indigenous communities.

Giant floodplain trees – starting with Ficus insipida and Cedrela odorata (representing the fourth stage of ecological succession) and continuing with Ceiba pentandra, Luehea cymulosa, Dipterix micrandra, Apuleia leiscarpa, Hura crepitans, Clarisia racemosa, Brosimum alicastrum, M anikara undata, Pterygota amazonica, etc. (of the fifth stage of succession) – normally get their start on the levees formed from the beaches on river meanders, under the thin shade and weak root development of the earliest successional species. Clearing and burning on the terra firme by humans also create such conditions. Studies in Panama (Foster and Brokaw 1982) and Peru (Foster et al. 1986) indicate that many floodplain species identical or closely related to those of the Tahuamanu thrive as emergents on the terra firme even 500 years after human clearing.

Our findings in the Tahuamanu area, where the emergent trees are approximately the same size as those in Panama, strongly support the idea that the terra firme is a first-generation forest, growing back from what must have been considerable, patchy human clearing until shortly after the European colonization.

The composition of the emergent trees is very reminiscent of the forests around the M aya ruins of the Petén in Guatemala, which are considered forests of economic plants. The dominant tree in the Petén, Brosimum alicastrum, is also apparently the most abundant large tree in the Tahuamanu area. Although a different subspecies, the Brosimum in the Petén is considered a cornucopia plant, i.e., the fresh leaves can be fed directly to domestic animals, the milky latex is palatable, the fresh fruits are sweet and edible, and the seeds when roasted are as delicious as cashews. Other trees concentrated in the Petén provide latex and wood of high quality, oils, spices, and edible fruits.

Although all tropical forests have a spectrum of species that are useful to indigenous people, the Petén forests seem to have undergone human selection and management to promote the most useful species. The forests of Pando seem similar. The importance of abundant trees such as Pterygota and Apuleia is not immediately obvious, although we cannot rule out possible uses as important medicines, resins, or fish poisons (e.g., Hura). The extreme rarity of juveniles of such an abundant tree as Bertholletia suggests that it may have been planted or otherwise promoted by humans hundreds of years ago. Alternatively, the current rarity of juvenile Bertholletia could be explained by overharvesting...
of seeds in recent decades (or centuries), or by other phenomena antagonistic to reproduction, or to some combination of these mechanisms. When combined with animal resources from the forest and rivers, as well as small shifting food plots with maize and manioc, this terra firme forest seems to have been an excellent place—in terms of food production—to support relatively large indigenous populations.

The arrival of Fitzcarraldo and the rubber boom more than a century ago probably brought the next big disturbance to the area. We do not know whether the intense rubber tapping during this period had any major effect on the forest, or whether hunting by rubber tappers then was as any more intense than it is now. Nor do we know the extent of Brazil-nut gathering before the current export industry developed.

The area between the Ríos Muyumanu and Tahuamanu has patches of secondary forest of various ages, but most appear to be less than 30 years old and the result of small-scale agriculture associated with the recent camps of the Brazil-nut gatherers and rubber tappers. This continuing practice probably has the effect of maintaining more species in the area than would have been there prior to the arrival of human settlements.

In the terra firme forest near San Sebastián, we saw only very recent patches of secondary vegetation. The apparently more homogeneous mosaic of forest ages at this site, compared to that at Pingo de Oro, likely affects animal populations. This forest has suffered some logging of Swietenia, Cedrela, and Amburana; however, the logging was apparently not very thorough, since we encountered on our transects individuals of the latter two species with diameters greater than 60 cm.

The near absence of Cedrela odorata along the river-meadow succession suggests that this species already has been thoroughly logged from the Tahuamanu floodplain. Terra firme in the Pingo de Oro area apparently has not been logged. We encountered one large-diameter mahogany (Swietenia) with a very short bole and another average-sized individual. Several other individuals, which at first appeared to be Swietenia, later proved to be Cedrela canjarena (cedro macho). Cedrela produces timber of lesser value. Given the area that we covered on trails, the density of Swietenia seems low compared to the other forest-association areas of lowland Bolivia (e.g., in Santa Cruz, Beni, and northern La Paz). The density of cedro appears to be average or even high for terra firme, apparently because of the presence of the floodplain species, Cedrela odorata, along with the normal terra firme species, Cedrela fissilis.

The most recent disturbance in the region has been in the last year (1999), with the cutting of timber inventory lines north of the Río M uymunu. More than 2% of the forest understory already has been chopped down during this recent inventory process.

REPTILES AND AMPHIBIANS

Participants/Authors: John E. Cadle and Steffen Reichle

Conservation targets: Reptile and amphibian communities of southwestern Amazonia.

METHODS

Because of the short duration of sampling at each site, we used only transect sampling for amphibians and reptiles; we did not attempt to use any trapping methods. We noted species occurrences based on visual encounters, voice recognition for frogs (some calls were tape-recorded for later verification), and specimens collection. We sampled old-growth forests on upland terraces, seasonally flooded and floodplain forests, secondary forests and clearings, riparian forests and river edge, rivers, and swamps. We used the following types of transects: (1) trails through old-growth and secondary forests; (2) stream edges; and (3) rivers (visually sampled by boat). We targeted specific habitats where particular species were likely to occur. These included swamps, small forest streams, and lake and river edges where aquatic species or breeding frogs tend to aggregate.

We sampled transects by walking slowly and attentively, surveying most habitats both by day and at night. We did not attempt a quantitative assessment of species abundance because we were sampling during a very dry spell at the end of the dry season (see comments below). Our results are only a qualitative indication of the composition of species in the communities of amphibians and reptiles in the region.

Our sampling events, from 16 to 24 October 1999, included 12 morning transects, 11 afternoon transects, 11 night transects, and 2 river transects. Each transect consisted of 2 to 3 person-hours. The survey at San Sebastián took place from 16 to 18 October and included 4 morning, 3 afternoon, and 6 night transects. The survey at Pingo de Oro occurred from 20 to 23 October and included 8 morning, 8 afternoon, and 5 night transects.

RESULTS OF THE HERPETOLOGICAL SURVEY

We recorded 7 species of snakes, 11 species of lizards, 32 species of frogs, 3 species of crocodilians, and 2 species of turtles (not including those recorded from a previous collection from the vicinity of Cobija, see below). We collected 3 snakes, 4 lizards, and 37 frogs, which are deposited in the Colección Boliviana Nacional de Fauna, in La Paz, under the collection numbers of S. Reichle.

In Tahuamanu we found that the composition of the species assemblage of amphibians and reptiles (Appendix 2) was similar to that of several other, well-known sites in southwestern Amazonia, particularly in southern Peru (e.g., Cuco Amaùnico, Tambopata Reserve, and lowland M. u Minucial Park, all in M. d. de Los Departamentos, Peru). However, in Bolivia this fauna probably is found only in parts of Pando and La Paz Departments north and west of the Río Beni. Because few herpetofaunal collections have been made in this part of Bolivia, we are as yet unsure if this assemblage extends through a broader area of these two departments or has a more restricted distribution in the region. This similarity between our Pando collections and others from southern Peru is substantiated by a small collection of reptiles (examined by J. Cadle) from the immediate vicinity of Cobija, which had been assembled by Oscar Teran, a student at the Universidad Amazonica de Pando (Appendix 2B). This Cobija collection again shows a strong regional relationship to other sites in southwestern Amazonia. One species in particular, the anguid lizard Diplolouscus fasciatus, of which we had only a sight record, has a known distribution that encompasses extreme southeastern Peru, adjacent parts of Bolivia, and part of the Río Mamoré drainage in adjacent Brazil.

The sampling period for this inventory (16-24 October) was not optimal for sampling the herpetofauna in this part of Amazonia. Our survey coincided with the late dry season, which is probably the least opportune time to obtain a representative sampling of amphibians and reptiles. Activity patterns of reptiles, and especially amphibians, are strongly tied to rainfall patterns; the dry season in this part of Bolivia normally lasts from approximately June to November (with some year-to-year variation). According to the herpetology research group at San Sebastián, no steady rain of even short duration had fallen since the end of September. Rains for several weeks prior to this were sporadic and of low intensity. We encountered few breeding species of frogs in our survey, although we did hear several species calling (Appendix 2). Tadpoles were present only in a small pool within a tree hollow on the ground (probably a dendrobatid frog).

We discovered no new species or species endemic to this region. However, 6 of the frog species that we observed are new country records for Bolivia. These include Eleutherodactylus sp. 1 and sp. 2 (both of the unistrigatus group), Epipedobates femoralis, E. trivittatus, Ischnocnemis quixensis, and Phrynophylos resiniflrix. All of these are common species of herpetofaunas of southern Peru. Their occurrence in Pando could be expected because most elements of this fauna probably are distributed at least to the Río Beni in Bolivia. However, the discovery of 6 species new to the Bolivian fauna (17% of the frog species we encountered), especially considering the poor conditions for herpetofaunal surveys, is significant. This discovery suggests that many more species new to the Bolivian herpetofauna probably remain to be registered in this area.
and Podocnemis unifilis – species whose populations have been reduced in many areas - are now uncommon in parts of the Río Tahuamanu and Río Muyumanu: we saw only three C. crocodylus and five P. unifilis along these rivers during approximately four hours of river travel. However, aside from the 3 species that probably have suffered significant losses from subsistence hunting pressure (the 2 above, plus Geochelone denticulata), current impact on the region’s herpetofauna seems low.

San Sebastián

We collected specimens of 3 lizards and 27 frogs at this site. Several of the species we recorded are new country records for Bolivia, including Eleutherodactylus sp. 1 and sp. 2 (unidentified group), Epipedobates femoralis, E. trivittatus, Ischnocnema quixensis, and Phrynophyax insectifex.

Pingo de Oro

We collected specimens of 2 snakes, 1 lizard, and 10 frogs at this site, including 4 of the 6 new country records for Bolivia first seen at San Sebastián.

THREATS AND RECOMMENDATIONS

The population status of locally exploited species should be ascertained more precisely. These include the turtles Podocnemis unifilis and Geochelone denticulata and the three species of crocodylians known from the area (Caiman crocodylus, C. niger, and Paleosuchus trigonatus). Surveys should include not only counts of individuals, but also estimates of the age structure (and, thus, of potential future reproduction and ability to recover from decline) of all populations. We suspect that neither Podocnemis nor other species of reptiles in this region can sustain commercialization of harvesting for export to major population centers, such as Cobija. Any harvesting program must have in place strict controls. We suspect that the other locally exploited turtle, Geochelone denticulata, cannot be harvested sustainably. Its reproductive potential is very low, and population densities are unlikely to reach sustainable levels, even with mild exploitation.

In sum, the forests we surveyed in the area of the proposed Tahuamanu Ecological Reserve are still relatively undisturbed and probably harbor intact assemblages of reptiles and amphibians. This fauna is probably restricted to parts of Pando and La Paz Departments in Bolivia, and extends north into southern Peru.

BIRDS

Participants/Authors: Thomas S. Schulenberg, Carmen Quirina O., Lois Jammes, and Debra Moskowitz

Conservation targets: Bird communities of southwestern Amazonia, large raptors, gamebirds, bamboo specialists, range-restricted species.

METHODS

The basic protocol for the survey involved walking trails through the forest to locate and identify bird species. Each observer was in the field from first light (or very shortly thereafter). Observers did not always return to the camp for lunch because some of the trail systems at this site were very long; those who did were in the field again from early to midafternoon until dusk. We made an effort to survey all habitats in the area. Each ornithologist walked the trails separately from the other observers and walked different trails on different days. T. Schulenberg, C. Quirina, and L. Jammes carried portable cassette tape recorders and directional microphones to record the songs and calls of bird species encountered. We did not conduct transects or point counts, but Schulenberg daily tallied the number of individuals he observed for each bird species, to aid in the assessment of relative abundances.

RESULTS OF THE BIRD SURVEY

We recorded 319 bird species throughout the region (exclusive of Cobija, Appendix 3). At the two sites most intensively surveyed, San Sebastián and Pingo de Oro, we recorded 163 and 192 species, respectively. These lists include not only forest bird species, but also species associated primarily with clearings or the borders of forest. Consequently, the forest bird community (including species associated with treefalls, stream edges, and other small, natural clearings) recorded at San Sebastián and Pingo de Oro were 151 and 182 species, respectively, equivalent to 93% and 95% of the bird species recorded. Similarly, the total number of species recorded during the survey includes not only species of large clearings or pastures but also species primarily associated with rivers, oxbow lakes (cochas), and other habitats. Overall, about 254 species, equivalent to 80% of the total, were associated primarily with forests (of all types). The bird fauna at Pingo de Oro was more intact and notably richer than the one at San Sebastián, with 15-20% more bird species encountered with equivalent sampling effort. Of the dominant families of birds in the forest (the suboscines), Pingo de Oro again showed higher species diversity, e.g., Furnariidae (7 species recorded at San Sebastián versus 12 at Pingo de Oro), Thamnophilidae and Formicariidae (24 versus 28), and Tyrannidae (24 versus 28). Also, the populations of some species present at both sites clearly were greater at Pingo de Oro. We rarely heard a Columbia at San Sebastián, whereas we heard both species of forest Columba commonly throughout the Pingo de Oro area.

Perhaps the single most notable bird species recorded during the survey was Harpyia harpyja. We made two separate sightings of this huge raptor, one at Pingo de Oro and the other along the logging road south of Rutina. This low-density species requires a large home range, as well as ample populations of monkeys and other large arboreal mammals for food; its presence indicates a forest with excellent conservation potential. A feather we found in Pingo de Oro probably came from Lecuopithecus kuhli, another raptor with a low population density, but we did not directly observe this species.

Mymotherula iheringi was a common member of the understory, Thamnomanes-dominated mixed-species flocks at Pingo de Oro. Ours appears to be the first record for this species in Bolivia. At Rutina (on both banks of the Río Tahuamanu), we recorded Formicarius rufignitus, a species previously known in Bolivia only from a single record from the Río Nareuda. This species otherwise is known only from M adre de Dios, Peru, and had been considered globally threatened because of its extremely restricted distribution. A single Nonnula sclateri, at the edge of the San Sebastián clearing, was another unusual record. This species is known from no more than 10 localities in a restricted area between the upper Purus and M adre de Dios Rivers in southeastern Peru (Ucayali and M adre de Dios), northern Bolivia (Pando), and southwestern Brazil (Acre). The only Nonnula recorded on the south bank of the Río Tahuamanu was the widespread species N. ruficapilla, which we found at Pingo de Oro and at Palmera. We found another species with a distribution very similar to that of Nonnula sclateri – the small flycatcher Lophotriclus euphotes – in bamboo at San Sebastián, at forest edge and near treefalls at Pingo de Oro, and at forest edge near Rutina. We are not aware of any records for either of these two range-restricted species from any protected area, although both may tolerate forest with a fair amount of disturbance.

The bamboo at San Sebastián contained...
several of the species expected in this microhabitat: Simoxenops ucauyale, Drymophila devillei, Ramphothgon fusicauda, Ramphothgon megacephala, and Hemitriccus flammulatus. The bamboo at Palmera had most of these species, along with several others also commonly associated with bamboo: Cymbilaimus sanctaemariae, Perognosta lophotes, and Myrmecia goeldii.

Penelope, a large gamebird, occurred both at San Sebastián and at Pingo de Oro, even very near human settlements. No macaws were seen at San Sebastián, and only a few at Pingo de Oro.

Based on this rapid survey, the region contains a rich Amazonian avifauna, with examples of species that indicate relatively low levels of human disturbance (e.g., Harpia harpyja) or that are range-restricted and potentially threatened (e.g., Nonnula scolateri, Formicarius rufifrons, Lophotriccus euphotes). The forests surveyed revealed a good representation of the forest bird community of Pando, which is typical of southwestern Amazonia.

San Sebastián
We arrived in the early afternoon on 16 October, with time only for incidental observations on that date. We were in the field all of 17-18 October and left early on 18 October, with about an hour at Casa Callimico on that date. Schulenberg also spent about 1.5 hours on the trail from Casa Callimico to San Sebastián on the morning of 25 October.

We recorded 163 bird species during the survey at San Sebastián. Of these, about 12 species are associated primarily with large clearings or the borders of forest. We registered 151 species of forest birds (including species associated with treefalls, stream edges, and other small, natural clearings).

Penelope was present in the forest. Large parrots, especially macaws, were very few. Large pigeons (Columbia) were scarce (or not vocal), with only one or two detections per day. The number of mixed-species flocks (both of the understory and the canopy) was low. In general, the species diversity of the site seemed low for an Amazonian forest. Of the ovenbirds (Furnariidae), one of the dominant bird families in Amazonia, we found only 7 species. The foliage-gleaners (Philodry, Automolus) were especially scarce, with only a few of the expected species present and apparently none common. Several species of antbirds expected (e.g., Thamnophilus anthipus) were absent. Although we had very few observations of army ants (Eciton) at this site, we found two species of regular army-ant followers (Gymnithys salvinii and Rhegmatoptima melanosticta). The bamboo contained several of the species expected in this microhabitat, such as Simoxenops ucauyale, Drymophila devillei, Hemitriccus flammulatus, Ramphothgon fusicauda, and R. megacephala.

Although the bird community at San Sebastián seemed depauperate relative to those at other sites in southwestern Amazonia, we detected some notable species, including Nonnula scolateri and Lophotriccus euphotes.

Pingo de Oro
We arrived at midday on 20 October, with a few hours in the afternoon to begin making observations. We were in the field all of 21-22 October. Quiroga and Jamme remained for all of 23 October as well. Schulenberg and Moskovits were present only for the morning of that day.

We registered 192 bird species during the survey at Pingo de Oro. Of these, about 10 species are associated primarily with large clearings or borders of forest, so the assemblage of forest birds (including species associated with treefalls, stream edges, and other small, natural clearings) was 182 species.

Penelope was present in the forest, even near the rubber tappers’ house at Pingo de Oro. A few macaws were present, but the populations of these birds seemed very low. In contrast to San Sebastián, large pigeons (Columbia) were common and vocal throughout the forest. As expected, among the more diverse families were the suboscines, such as the ovenbirds (Furnariidae: 12 species), antbirds (Thamnophilidae and Formicariidae: 28 species), and tyrant flycatchers (28 species). In contrast to San Sebastián, we regularly saw army ants (Eciton) at this site but have no records of any species of regular army-ant-following birds.

We found several areas of bamboo near the Río Muyuman at Palmera and along the trail between Palmera and Pingo de Oro. The avifauna in the bamboo was somewhat richer than in the same habitat at San Sebastián, containing all of the “bamboo specialist” species found there, as well as additional species such as Cymbilaimus sanctaemariae and Perognosta lophotes.

The species richness at Pingo de Oro is high, but lower than the richest sites in southwestern Amazonia, such as Cocha Cashu, or along the Río Tambopata (both in Peru). It is probably comparable to that of forests along the Ríos Palma Real and Heath (Peru), or elsewhere in Pando.

THREATS AND RECOMMENDATIONS
We did not record all species present at the site; a more comprehensive survey of the avifauna would be valuable. However, we know that the bird community at San Sebastián is less diverse than that at Pingo de Oro. We know, as well, that the forest at San Sebastián has been logged in the last decade. Given the extensive scale of logging that is expected to occur throughout Pando, the effects of this activity on the fauna must be researched. We cannot confirm that the differences in the bird community structure between San Sebastián and Pingo de Oro are due to the effects of logging, because no avifaunal inventories existed before logging took place. To measure the possible impacts of past logging and to establish a baseline, we recommend a comprehensive bird survey as soon as possible.

A monitoring program for bird populations could then document changes in the bird community as the forest regenerates. With so little information about birds in Pando, the forest at Pingo de Oro offers an excellent opportunity for a more complete inventory of the avifauna of the region.

Future studies also should focus on the impact of subsistence hunting on the populations of gamebirds, like Penelope, to determine sustainable levels. Research on the impact of the pet trade and hunting on the parrot population will suggest adequate management measures.

PRIMATES
Participants/Authors: Sandra Suárez, Amy Hanson,
METHODS

Extensive research on several primate species has been conducted at San Sebastián for more than two years, through the combined efforts of the team members listed above, Edilio Nacimento, and Leila Porter. Although our general knowledge of the primate species at the San Sebastián field site is enough to estimate primate densities, we spent two days conducting formal transect surveys at the site, both to confirm our impressions and to collect data for comparisons with our surveys at Pingo de Oro. At both locations, we walked singly along established trails, at a rate of approximately 1 km/hr, and recorded all primate groups seen or heard. We conducted formal transect surveys between 0630 and 1030, and between 1400 and 1700. We also noted primates that we, or other members of the rapid survey team, saw or heard at other times of the day. Each team member selected a trail that transected an area not likely to overlap with that of other surveyors; the group sampled five trails simultaneously. At Pingo de Oro we surveyed each trail twice daily for three consecutive days. During surveys we recorded the following data for each primate group seen or heard: (1) time; (2) location of observer along the transect when the group was detected; (3) species, and number of individuals in the group; (4) distance from the observer to the center of the group; (5) angle from the center of the group to the transect line; (6) height of the group in the canopy; (7) diameter of the group when detected; (8) activity of the group at first sighting; (9) forest type; (10) substrate type; and (11) mode of detection.

We divided the number of groups of each species detected (by sight or sound) during formal transect walks by the number of person-hours (see species detected during our formal transect surveys, and supplementary information from local residents and our own experience (see Appendix 4 for common names).

We detected 14 species of nonhuman primates in the two areas surveyed: 11 species at San Sebastián and 12 at Pingo de Oro. Twelve of the 14 species were observed definitively. One species, Ateles chamek, was not seen by our team but was determined to be in the area based on interviews with local residents. Lagothrix lagotricha was glimpsed only briefly, and its status in the area needs to be confirmed (see below). Our sighting of Pithecia irrorata at Pingo de Oro is the first documentation south of the Río Tahuamanu in Bolivia and may indicate a range extension. L. Porter and E. Nacimento also observed 6 species during their mammal survey along the logging road between Rutina and Palamera, including Callicebus cf. brunneus, Cebuella pyramidens, Cebus apella, Saguinus fuscicolis, Saginus imperator, and Saimiri boliviensis. Interviews with local people conducted in the 1970s indicate that Callicebus occur south of the Río Tahuamanu (Izawa 1979). However, no actual sightings of the species in the region have been published, and our rapid survey found no evidence that Callicebus occur in the vicinity of Pingo de Oro.

Below we list the species of primates recorded during this rapid inventory, numbers of groups encountered during our formal transect surveys, and supplementary information from local residents and our own experience (see Appendix 4 for common names).
 Below we list the species of primates encountered during this rapid survey, our estimates of relative abundance at each site, and notes on status.

<table>
<thead>
<tr>
<th>Species</th>
<th>San Sebastián</th>
<th>Pingo de Oro</th>
<th>Special Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aotus nigriceps</td>
<td>common</td>
<td>common</td>
<td>—</td>
</tr>
<tr>
<td>Ateles chamek</td>
<td>none</td>
<td>rare</td>
<td>locally endangered</td>
</tr>
<tr>
<td>Calliebus cf. brunneus</td>
<td>common</td>
<td>abundant</td>
<td>endemic to Bolivia</td>
</tr>
<tr>
<td>Callicebus goeldii</td>
<td>uncommon</td>
<td>undocumented</td>
<td>vulnerable, edge of range</td>
</tr>
<tr>
<td>Cebuella pygmaea</td>
<td>uncommon</td>
<td>uncommon</td>
<td>edge of range, restricted to Pando in Bolivia</td>
</tr>
<tr>
<td>Cebus albifrons</td>
<td>uncommon</td>
<td>common</td>
<td>endemic to Bolivia</td>
</tr>
<tr>
<td>C. apella</td>
<td>common</td>
<td>common</td>
<td>—</td>
</tr>
<tr>
<td>Lagothrix lagotricha</td>
<td>none</td>
<td>rare</td>
<td>locally critically endangered or extirpated</td>
</tr>
<tr>
<td>Pithecia irrorata</td>
<td>uncommon</td>
<td>rare</td>
<td>edge of range, likely restricted to Pando</td>
</tr>
<tr>
<td>Saguinus fuscicolis</td>
<td>abundant</td>
<td>common</td>
<td>—</td>
</tr>
<tr>
<td>S. imperator</td>
<td>none</td>
<td>uncommon</td>
<td>—</td>
</tr>
<tr>
<td>S. labiatus</td>
<td>abundant</td>
<td>none</td>
<td>edge of range, restricted to Pando in Bolivia</td>
</tr>
<tr>
<td>Saimiri boliviensis</td>
<td>uncommon</td>
<td>uncommon</td>
<td>—</td>
</tr>
</tbody>
</table>

The complement and relative abundance of primate species differ between the San Sebastián and Pingo de Oro sites, underscoring the importance of protecting sites on both sides of the Río Tahuamanu. The river itself acts as a natural barrier to the distribution of some primates (Callimico goeldii, S. labiatus, and Callimico) at Pingo de Oro which result from less hunting pressure at that site than at San Sebastián. The higher densities of some of the smaller primates (Saguinus fuscicolis, S. labiatus, and Callimico) at San Sebastián likely reflects the ability of these species to thrive in younger, secondary forest habitats, which are more common at that site.

We had one possible sighting of Lagothrix lagotricha, the common woolly monkey, which has not been reported from Bolivia for as many as 50 years. The species had been considered extirpated from Bolivia by hunting and habitat disturbance. However, the sighting at Pingo de Oro suggests potential for recovery of the species with adequate conservation measures. Woolly monkeys are highly sensitive to habitat degradation, and protection of the old-growth forests will be critical for re-establishment of the species in Bolivia.

OTHER LARGE MAMMALS

Participants/Authors: Lelia Porter and Edilio Nacimento
Conservation targets: Mammals classified as CITES I (threatened with extinction) and CITES II (potentially endangered if no action is taken). CITES I animals include Herpeton yaguarandi, Leopardus pardalis, L. wiedii, Puma concolor, and Speothos venaticus; the giant otter (Pteronura brasiliensis) is also reported as present in the region. CITES II animals include Myrmecophaga tridactyla, Tapirus terrestris, Tayassu pecari, and T. tajacu. (Names follow Emmons 1997.)

METHODS

We used two methods to evaluate species richness at the sites sampled. One consisted of a long-term survey; we noted all mammals observed during the course of a two-year study on primates at San Sebastián (150-ha study area; 0 October 1997-0 October 1999). We believe the list for San Sebastián (Appendix 5) portrays a full representation of the large mammals at the site. The second method was rapid: we surveyed Pingo de Oro, Palmera, and the Rutina-Palmera road between 20 and 24 October 1999. We searched during daytime and nighttime hours for mammals and mammal tracks along existing trails, riverbanks, and logging roads. We sampled old-growth forests, selectively logged forests, secondary forests adjacent to current and abandoned houses and their agricultural plots, and seasonally flooded forests along the Ríos Muyumanu and Tahuamanu. We paid particular attention to mud banks, where animals are known to eat soil, and to river edges and wet forests, where tracks were easier to distinguish and identify. We also recorded species from skulk and other hunting remains, and interviewed local residents to estimate species composition at these sites.

RESULTS OF THE LARGE-MAMMAL SURVEY

We recorded 37 large nonprimate species of mammals in this area (Appendix 5). The giant otter (Pteronura brasiliensis), a species nearly extirpated in the region, was reported by one local resident interviewed. The identification of the green acouchi (Myoprocta pratti) is the first record for Bolivia; it occurs at high densities throughout the area. In addition, we observed one deer resembling M azama gosauabura (at San Sebastián), but with yellow and black lines below its eyes, which may represent a unique species or subspecies of Cervidae.

We found 35 species of large mammals during the two years at the site (Appendix 5). Mammals such as tapir (Tapirus terrestris) that provide preferred meat appear to be at low densities. A disease epidemic in the 1970s, combined with hunting pressure, also may have eliminated white-lipped peccary (Tayassu pecari), a species historically present in the area. However, the area continues to maintain a high species richness of large mammals, including a number of carnivores. San Sebastián contains 8 of the 4 CITES I species and the 4 CITES II species listed above as conservation targets.

Pingo de Oro

A skull found outside a rubber-tapper’s home confirmed the presence of Tayassu pecari at Pingo de Oro. Although the presence of Tayassu pecari at Pingo de Oro suggests potential for recovery of the species at that site. The high species richness of large mammals, including a number of carnivores. San Sebastián contains 8 of the 4 CITES I species and the 4 CITES II species listed above as conservation targets.
we recorded only 14 species during our three-day survey (Appendix 5), interviews with local residents suggest that all of the megafauna observed in San Sebastián also occurs at this site. We found evidence of 3 large mammals classified as CITES I (Leopardus pardalis, Pliodontes maximus, and Puma concolor) and 2 species classified as CITES II (Tayassu pecari and T. tajacu). The presence of Tayassu pecari, and the many tracks of Tapirus terrestris, indicate that the site is likely to have a greater abundance of large mammals than the forests to the north, near San Sebastián. This region has fewer human inhabitants and has undergone less hunting pressure and habitat destruction than has the area north of the Río Tahuamanu.

Palmera

We sampled old-growth and secondary forest habitats adjacent to Palmera (on foot), and riverine forest along the banks of the Río M u yumanu (by boat), on the afternoon of 23 October 1999. Species observed include Agouti paca, Dasyprocta variegata, Mazama americana, and Tapirus terrestris. Hydrochaeris appears to be abundant along the Río M u yumanu. Large numbers of tracks along the banks of the Río M u yumanu suggest that this is an important area for the protection of Tapirus terrestris. Pteronura brasiliensis was thought extinct in this area because of hunting for fur (in the 1950s), but local residents reported that they had seen this species more recently along the Río M u yumanu.

Rutina-Palmera Logging Road

We walked portions of the recently opened logging road between Rutina and Palmera on 24 October 1999, from midmorning to midafternoon. We also walked sections of the older logging road. In addition to 6 species of primates (reported above), we identified 4 mammal species including Agouti paca, Dasyprocta variegata, Mazama americana, and Pliodontes maximus. We also encountered tracks of one large mammal that need further investigation for identification.

THREATS AND PRELIMINARY RECOMMENDATIONS

Further research in the proposed Tahuamanu Ecological Reserve should include investigation and identification of the unknown mammal tracks discovered southwest of Rutina (above), as well as further study of the Cervidae in the area. Studies of the effects of hunting on populations of large mammals are critical for the development of appropriate management plans. Hunting regulations will have to be coordinated with local residents and seasonal workers (many enter during the season of Brazil-nut harvest) to protect threatened species, such as peccaries and tapis, from overhunting. An inventory of small mammals also is lacking for the region.

